Formulario: equazione algebrica di secondo grado

Classificare un'equazione di secondo grado

Un equazione algebrica di 2° grado si presenta nella forma:
`ax^2+bx+c =0`, con `a!=0` .

Se `b!=0, c!=0` l'equazione si dice in forma completa e si risolve utilizzando la formula risolutiva:

`x_(1,2) = (-b+-sqrt(b^2-4ac))/(2a)`

Il termine `Delta = b^2-4ac`  si dice discriminante.

  • Se `Delta > 0` l'equazione fornisce due soluzioni reali e distinte che si ottengono applicando la formula risolutiva
  • se `Delta = 0` l'equazione fornisce due soluzioni reali e coincidenti `x_1=x_2=-b/(2a)`
  • se `Delta < 0` l'equazione fornisce due soluzioni non reali (complesse e coniugate).

Se `b=0, c!=0` l'equazione si dice pura e diventa `a x^2 + c=0`.
Le due soluzioni sono `x=+-sqrt(-c/a)`.

Se `b!=0, c=0` l'equazione si dice spuria e si risolve raccogliendo `x(a x+b)=0` per cui le soluzioni sono `x_1=0, x_2=-b/a`.

Formula ridotta

Se `b` è pari, può essere più comodo applicare la formula risolutiva ridotta:
`x_(1,2) = (-b/2+-sqrt((b/2)^2-ac))/(a)`

Relazione tra le soluzioni dell'equazione ed i suoi coefficienti `a, b, c`

`x_1 + x_2=-b/a` ,
`x_1 * x_2=c/a`

per cui l'equazione `ax^2+bx+c = 0` può essere scritta in forma equivalente:
`x^2-(x_1+x_2) *x + (x_1*x_2) = 0`

Scomposizione del trinomio di 2° grado

`ax^2+bx+c = a(x-x_1) *(x -x_2)`