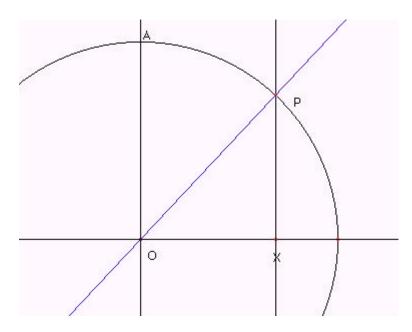
Calcolo dell'integrale circolare

Come è noto, l'integrale indefinito di una funzione integrabile f(x) può essere calcolato come somma di una qualsiasi primitiva F(x) della f(x) e di una costante arbitraria.

In particolare, F(x) può essere la funzione integrale $\int_{a}^{x} f(t)dt$.

Questo metodo può essere applicato per calcolare l'integrale $\int \sqrt{a^2 - x^2} dx$.

Consideriamo $\int_0^x \sqrt{a^2 - x^2} \, dx$. Esso rappresenta l'area della parte finita di piano compresa tra l'asse Oy, l'asse Ox, la circonferenza di equazione $x^2 + y^2 = a^2$ e la retta parallela a Oy di equazione x = x.



Il rettangoloide OXPA viene scomposto nel triangolo OXP e nel settore circolare POA. Essendo

$$OX = x,
OP = a,
PX = $\sqrt{a^2 - x^2},$$$

l'area del triangolo è data da $\frac{1}{2}x\sqrt{a^2-x^2}$.

L'area del settore circolare è il semiprodotto dell'arco per il raggio, cioè $\frac{1}{2}a^2 \cdot \boldsymbol{a}$, essendo α la misura in radianti dell'angolo \hat{AOP} . Poiché $\sin(\hat{AOP}) = \frac{x}{a}$, avremo $\alpha = \arcsin(\frac{x}{a})$. Quindi si ottiene (aggiungendo la costante additiva C)

$$\int \sqrt{a^2 - x^2} \, dx = \int_0^x \sqrt{a^2 - x^2} \, dx + C = \frac{1}{2} x \sqrt{a^2 - x^2} + \frac{1}{2} a^2 \cdot \arcsin(\frac{x}{a}) + C.$$

Ezio Fornero